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ABSTRACT: An cwbreak of prnewmonia of unknown etiology in Wuhan Ciry, Hubei
Province, China was initiclly reported to the World Health Organization in December
2019, Global health authorities purportedly identified a novel coronavirus (SARS-CoV-
2} which continues to effect most of the world. Diagnestic testing for SARS-CoV-2
continues o advance and interpreting test results is paramount. The most commanly
used diagnostic test has been the reverse transcriptase polymerase chain reaction
amplification.  Determining test precision not only depends on operating characteristics,
sensitivity and specificity, but more importantly on prevalence of the infectious in the
population tested.  Thiv paper develops a numerical optimizer {model) to explore the
effect of prevalence on surveillance testing accuracy. Findings herein suggesi that large
scale COVID-19 surveillance testing should be curbed or eliminated. Results advocate a
more flexible and narrowly targeted approach to testing strategies.
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INTRODUCTION

In December 2019, an outbreak of a respiratory discase associated with a purported novel
coronavirus (SARS-CoV-2) was reported in the city of Wuhan in the Hubeil province of
the People’s Republic of China. On March 11, 2020, the World Health Organization
declared Coronavirus Disease 2019 (COVID-19) a pandemic.! The first alleged case of
COVID-19 in the United States was reported in Janvary 2020 and the first alleged death
in February 2020, both in Washington State.” As of November 28, 2020, the number of
known cases in the United States has increased o over 13 million and assigned deaths
265 thousand.”

Diagnostic testing for SARS-CoV-2 continues to advance and imterpreting test regime
findings appears paramount. In most seitings, reverse lranscriptase polymerase chain
reaction (RT-PCR) tests are used.* Due to the lack ol an ideal gold standard °, muliple

U'World Health Orpanization (WHO) Timeline COVID-19, April 2020, weww. who int

* Wital Statistics Reporting Goidance NVSS, Report Number 3, Aprit 2020, p. 1

¥ Pracking COVID-19 Cases in the U5, John Hopkins Universty Center for Systems Science and Engincering.
Movember 28, 2020, www. ciLcom

1 Antigen tesis also detect the presence of SARS-CoV-2 but are less sensitive (mose likely to prodoce a false-negative
reselth than RT-POUR tesis, MNegative antigen tests should be conficmed with a RT-PUR west before considening a person
neputive for COVID-19 Sermbogy blood tests detecting TeG and fgM antibodies of active and past infections are also
wvatlable, Problems with both of these testing regimes ane also mumerons and not the main foens of this analysis

* Tor date, no research available has isolated and purified SARS-CoV-2 following Koch's postolates,
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RNA gene targets have been developed.® A positive RT-PCR test reflects only the
detection of the targeted RNA genome sequence and not the presence of viable virus,’
As a result, determining test precision is challenging and perhaps unattainable ™ Two
operating  characteristics are uscd to evaluate the credibility of a diagnostic test.
Senstlivity (percent positive agreemcnt, PPA) 1s the share of a population with the
targeted genome sequence and test positive for its presence.  The other measure is
specificity (PNA), those who are target {ree and test negative. A review of the literature
attempling to quantily SARS-CoV-2 test accuracy find sensitivity rates ranging from
719 to Y8% and specificity rates between 90% and 99%.° A myriad of factors can effect
accuracy rates including sample quality, infection'” stage. gene sequence load, RNA gene
targets, reverse primers. cyele threshold (CoO'' . in vitro verification versus clinical
settings, prevalence during test development, and numerous others.'”

Evaluation of broad surveillance testing depends not only on PPA and PNA but also on
prevalence of the infectious in the population tested.'” Some would argue prevalence of
what you are testing for is the most important factor.' Infectious prevalence obviously is
unknown and may wvary considerably across communities. Estimating prevalence 15
ooverned by the spread of SARS-CoV-2 and is thwarted by the existence of false test
results. Browd regional surveillance based estimates range from 0.1% 1o 11% but appear
tor be drawn [rom simple conjecture. ™

This paper develops a mathematical framework 1o explore the effect of prevalence on
surveillance testing accuracy.  Precision metrics PPA and PNA are embedded in a
numerical model that demonstrates the relationship between prevalence. true and false
test results. The model combines a simple interface, algebraic expressions, and an

S Numcrouy penc largets are uscod by different manafaociurers. See Vogels, R eval, (20200 Analyviical sensiivily
ad efticicncy comparisons of SARS-CoV-2 gRT-POR pxsays, med Raw 20048 108,
Pwallel, B et al., (20200 Virological assessment of hospitalized patients with COVID- 1Y, Nature April 1, 2020,
Kary Mullis himscli, the inventor of the Polvimcrase Chain Reaction (PCR ) echnology, did net
as wseful ina clinfeal diagnostic setting. His imvention carned the Mobel prize im chemisiry in (993

of T4, bt there 15 no doebl that he regarded PR as

“ Ny rerarks
1hank 1t
Unfortumately, Mullis passed mway Tast vear {20197 at the age
inappropriate o deteet a vical infection, The reason s that the interded wse of the POR was, and st is, woapply it as a

manufacioring technique, being able w amplify DNA sequences millicns and billions of fmes, asd nel as podiagnosic
T Lo delecl Virlses.

“Watsen ), Whiting PE, Brush JE (2020) Interpreting a covid-19 test result, Beinish Medical Sowenel 2000 May 17
3069 m180E. See also Brooks CF and Das 5. (20200 COVID-TY Testing Inpact of Prevatence, Sensitivity und

S M ¥ Movember 1345735840 A meta
analyais can be found here, FIND P ot Fowe Inmovative Mew Diagnoste, Test porformanse Fibarered.
hiepsdfindds shimyapps 1o/ ON T 9D e, Mera-analysis of 35 mametactores and 35 differont tests,

U Used throughout for the lack of o beter werm.

ity on Patient Risk and Cost. Ameriesm Souenal of Ol

Cris the number of replicouon Cwmplificaion) cyeles required w produce a fuorescent signal.
TRehlenger. RL, (20200 POR teats Tor SARS-CoV-2, Interpreting results correctly, Drsel Avzredd Bune F20 117 (24),
" Foran individuat this would ke pre-test risk probabiliny {anchory. How Bkely is i that voo have the inlcction
Y Brcoks A and Das 50020000 COWID- 19 Testing Tmpact of Prevalence, Sensitivity and Speoificity oo Potient Rask
annd Tt Americen Jowrmal of Clinkeal Pathology November | 54575354,
*Ceniers Tor Disense Control and Brevention, nterim goidelines for COVID= 1% annbogy testing. See abso fomooie (4.
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optimizer for nonlinear problems.' The optimizer uses generalized reduced gradient

{GRG) and branch and bound (BB} methods w lind the optumal solution. The remainder
of this analvsis is divided into three scctions, The Model Section details the numerical
model and relevant equations. Section 3 presents simulation results including graphs that
transition understanding. Imphications and conclusions of the analysis are drawn out 1n
Section 4.

NMODEL
Equations (17 - (4) represent the fundamental alechraic system linked to the evaluation of

diagnostic lesting.

(TP} = (PPAYp(PT)) (1)
(FP)=(1-pXPT)—{TN) (2)
(1) = (PNAK(PT NI = p)) (3)
(FN)= p{PT)~(TP) (4)

Table T gives a detailed description of each variable n equatons (1) - (4).

Tabhle 1. Variahle Detfimitions

(FT Population tested.

P Percent ol the populaton tested with the infection,
Infectious Provalence, Pre-test risk probahility.

(TP}  Thosc actually infected that test positive.
{PPA) Sensitivily.

(PNA) Specificity.

“ Menhinearity lends itself 1o o broad general approach useful in most applications. Restricting linsanily Lo an oplimizer
can lead o model sealing issues
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(TN)  Those actually infection free and test negative.
(FPy  Those whao test positive and are not infected.

{FAN)  Those who test negative and actually have the infection.

Equations (1) - (4) form the basis of the model suitable for a generalized optimizer. For a
nonlinear progranuning construct, the focus centers on the Jacobian matrix of partial
derivatives of the problem equations with respect to the choice varnables.  In this
nonlinear setting. the Jacobian matrix elements are variable and must be recomputed at
cach new trial point. The optimizer only focuses on equations related (o the objective and
constraints to the choice variables.  All other equations and variables are treated as
constants. The optimizer relies on GRG methods which are arguably superior 1o other
nonlinear constructs, !’

The inclusion of integer variables requires a branch and bound (BB} algorithm combined
with GRG methods. The BB algorithm beging by solving the unconstrained problem
using GRG yielding a best bound starting point. The algorithm then begins branching
and solving sub-problems now satisfying all constraints.  Each incumbent solution is
saved with the algorithm continuing to iterate until the following rclative difference 15
minimized or equals some defined tolerance.

Incwmbent — BestRound .
E— ()
BestBound

Generally, the BB algorithm finds an optimal solution quickly. To illustrate, consider the
following simple problem. A small community within a US State has decided 1o initate
a surveillance COVID-19 testing program.  The population of the community is 65,000
and 30000 tests have been administered in the past month,  The local public health
official asserts a positive test rate of 6 percent or 3000 positive results. Additionally,
health officials would like to have an estimate of the infectious prevalence (p) in the
Community.

Assume the local health authority sourced the COVIID-19 1wests from Abbott. Resulls
from a clinical study released on October 7, 2020 shows Abbott’s 11 NOW ™ with
Sensitivity of 95% and Specificity of 97.9%. "% Employing the optimizer described above,
we seek W achieve a target value ((TPIH(FPUPT) equal 1o 0.06 by ierating (changing)

17 G Lasbon, LS. and Smich. S, 019921 Solving large sparse aonlinear programs using GRG, ORSA Jowrmdl on
Coyriing {4 pp 2-15.

¥ See Abbotl press release dated October 7, 2020 anncuncing results of 2 Clingeal Study involving LIRS subjects,
Abbottcom. Reporaed accuracies are muoch higher for in vitre studivs which are perfermed i carefully comtrolled
conditions, wasw, abhhaetl com
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the value of (p) subject to the constraint equations (1) - (4), Resuolis are depicted in Table
g

Table 2. Simple Problem Optimum {Optimizer run time |4 scconds)

Infectious Prevalence (p) 4. 198%
Sensitivity (PPA) {1.950
Specificity (PNA) (L4979
Population Tested (77 30,000
Infectious in the Population p( P71 2 099
Correctly Test Negative (TV) 46,595
Infected and Test Positive (T7) P o
False Positive (F) 006
Has the Infection and Test Missed {(FA 105
Share of Positive Tests 6.0
Share Halse Positives 33.5%
Share of False Negatives (1.22%

The optimal solotion for infectious  prevalence is 4. 198% in this community.
Interestingly, more than one third of the 3,000 reported positive tests are potentially false
positives. The conventional positive predictive value (PPWV) Is stmply 1 - % FFP) which
equals 66.5%. Moreover, potentially 105 have the gene target and the test came back
negative.  In order to understand the differences in proportions of false test results,
cguations (1) - (4) can be rearranged yielding equations (6) and (7). The term £
represents the varables PPA and PNA where PPA = PNA = . Meta-analysis cited
above shows that these terms zenerally take the value of (.70 or higher.  Holding #
constant in this manner assisls in understianding equations (6) and (7)) as they pertain to

]'?I'I;’,‘lr'g'lh_']]C:_‘.

(I—pXl-6&)

Gty = (6)
O+ (1= pil=0)

(= .

I R {7

YN = S e
(1= pild+ pil = 4)
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Focusing first on the numerators, low infectious prevalence (p) resulls in the numerator of
(6) being greater than the numerator in (7). When (g} 1s greater than 050 the numerator
in (7} will be greater than the numerator in (6). Understanding the denominators is mare
complex due to the summation of two terms. At levels of low prevalence, the
denominator in (6) will be less than the denominator in (7). As prevalence rises (o over
(.50 the denominator in (0) exceeds the denominator in (7). In summary, within the
relevant range of broad community prevalence, proportions of false positives will
dominate {alse negatives. ™

MODEL SIMULATIONS

The strength of the numerical model developed Tor this analysis 15 the ability o simulate
optimal solutions by perturbing key choice variables andfor projecting over time or space,
As described above, the goal of this paper is to explore the relationship between
prevalence and testing accuracy. Two cohorts of PPA and PNA are modeled: 1) The
Abbott Climcal Study described  above, 95%., 97.9%, and 2) The Foundation for
[nnovative New Diagnostics (FIND) meta-analysis results also described above, 86%,
96% " Figure (1} shows the relationship of percent of false negatives and false positives
over the unit interval of infectious prevalence for the Abbott cohort.

Figuere 1, Peroont False Megatives and Percent False Positives
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M See footnotes 14 and 15
TR mera-anabysis PPA bascling is similar to reswlts Tourd i Jarrom, D, et ol (20 EMectivencss of lesis todetect
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The prevalence U reinforces that false positives are more likely when the contagious are

fewer in a population while false negatives are likely abundant when risk prevalence is

high.  Because true infectious prevalence i1s unknown. shares of positive test results

ascend o become a deficient substitwte.  Figure (2) depicts the relationship of false

positives and prevalence over the relevant range of percent of positive tests. The targeted
choice variable, percent of posilive tests, Is iterated until terminal at 20%_!

Fegure 2. Percent Prévalence and Percenl False Positives
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Tracimg the results from Table 2, at 6% positive tests, move up to the solid line - 4.2%
prevalence, move up to the dashed line - 33.5% false positives. The percent of positive
tests tends to overestimate true infectious prevalence.

Figure (3) shows the relationship of percent of false negatives and false positives over the
unit interval of infectious prevalence for the KIND cohort,  Markedly lower sensilivity
(PPA) tends to upward flatten the curves of the prevalence U and mcreascs the
proportions of false results. Notably, the percent false negative curve s flatened vpward
in greater proportion.

Ao of Movember 28, 2000, the Centers for Discase Control (CDCT) reperts overall 7005 positive test resalis inthe TS,

covitkede. oy, Crverall estimares such s the CDOS are defcient becouse (hey inchede resols of individuals that are

Lested mwre than e,
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Frgure 3. Percent False Negathves and Percend False Positives
Tial Acciwasy PPA 86%, PHNA 5% KIND
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To illustrate, at 50% prevalence the Abbott cohort simulates the percent of Talse negatives
at 4.9% and the percent false positives at 2.29%. Conversely, the KIND cohort simulates
e

the percent of Talse negatives at 12.7% and the percent false positives at £.4%., Lower
sensitivity impacts false negative results in greater magnitude.

IMPLICATIONS AND CONCLUSIONS

This analysis emphasizes the importance of imfectious prevalence m the tested population
as it relates 1o COVIHD-19 test accuracy. Likely prevalence should be a key consideration
for public health officials when interpreting test results and conceiving surveillance
testing strategies.  The numerical optimizer developed provides an improved method (o
estimate community infecnious prevalence.  In addition, the optimizer can simulate a
myriad of scenarios highlighting the levels of false test results.  False results have
significant costs, both tangible and latent.  Research on quantifying simple accounting
costs of a false rest result (e.g test cost, treatment cost, ete.) are abundant, while
estimates ol latent costs { e.g. true cconomic costs of quarantines and lockdowns) are

=

scant and sinply madeqguate,

=2 See for example, Brooks Y0 and Dos 5. (20200 COVED- 1Y Testing Tmpact of Provalence, Sensitivity and
Specilicity on Patent Risk and Cost, American Sowreal of Clivieal Padhofogy Movember [54:575-5384
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The relevant range of hroad infeetious prevalence is contamed within the lower portion of
the unit interval. Low levels of prevalence produce proportionally more false positive
results. Findings herein suggest that large scale COVID-1Y surveillance testing should be
curbed or climinated. The potential for large numbers of false positives and associated
costs outwelgh purported benefits of broad surveillance,  Testing strategics necd w0 be
more [lexible and narrowly targeted in order to respond to changes in prevalence.
Morcover, this paper illustrates that a test's sensitivity and specificity, while important, do
not independently drive probabilities of false test outcomes.



